Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomimetics (Basel) ; 9(2)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38392166

RESUMO

Numerous people are applying for bank loans as a result of the banking industry's expansion, but because banks only have a certain amount of assets to lend to, they can only do so to a certain number of applicants. Therefore, the banking industry is very interested in finding ways to reduce the risk factor involved in choosing the safe applicant in order to save lots of bank resources. These days, machine learning greatly reduces the amount of work needed to choose the safe applicant. Taking this into account, a novel weights and structure determination (WASD) neural network has been built to meet the aforementioned two challenges of credit approval and loan approval, as well as to handle the unique characteristics of each. Motivated by the observation that WASD neural networks outperform conventional back-propagation neural networks in terms of sluggish training speed and being stuck in local minima, we created a bio-inspired WASD algorithm for binary classification problems (BWASD) for best adapting to the credit or loan approval model by utilizing the metaheuristic beetle antennae search (BAS) algorithm to improve the learning procedure of the WASD algorithm. Theoretical and experimental study demonstrate superior performance and problem adaptability. Furthermore, we provide a complete MATLAB package to support our experiments together with full implementation and extensive installation instructions.

2.
IEEE Trans Neural Netw Learn Syst ; 33(8): 3415-3424, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33513117

RESUMO

The problem of solving linear equations is considered as one of the fundamental problems commonly encountered in science and engineering. In this article, the complex-valued time-varying linear matrix equation (CVTV-LME) problem is investigated. Then, by employing a complex-valued, time-varying QR (CVTVQR) decomposition, the zeroing neural network (ZNN) method, equivalent transformations, Kronecker product, and vectorization techniques, we propose and study a CVTVQR decomposition-based linear matrix equation (CVTVQR-LME) model. In addition to the usage of the QR decomposition, the further advantage of the CVTVQR-LME model is reflected in the fact that it can handle a linear system with square or rectangular coefficient matrix in both the matrix and vector cases. Its efficacy in solving the CVTV-LME problems have been tested in a variety of numerical simulations as well as in two applications, one in robotic motion tracking and the other in angle-of-arrival localization.

3.
Neural Comput ; 28(12): 2790-2824, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27391685

RESUMO

Two complex Zhang neural network (ZNN) models for computing the Drazin inverse of arbitrary time-varying complex square matrix are presented. The design of these neural networks is based on corresponding matrix-valued error functions arising from the limit representations of the Drazin inverse. Two types of activation functions, appropriate for handling complex matrices, are exploited to develop each of these networks. Theoretical results of convergence analysis are presented to show the desirable properties of the proposed complex-valued ZNN models. Numerical results further demonstrate the effectiveness of the proposed models.


Assuntos
Algoritmos , Redes Neurais de Computação , Simulação por Computador
4.
Neural Comput ; 28(5): 970-98, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26890345

RESUMO

Two linear recurrent neural networks for generating outer inverses with prescribed range and null space are defined. Each of the proposed recurrent neural networks is based on the matrix-valued differential equation, a generalization of dynamic equations proposed earlier for the nonsingular matrix inversion, the Moore-Penrose inversion, as well as the Drazin inversion, under the condition of zero initial state. The application of the first approach is conditioned by the properties of the spectrum of a certain matrix; the second approach eliminates this drawback, though at the cost of increasing the number of matrix operations. The cases corresponding to the most common generalized inverses are defined. The conditions that ensure stability of the proposed neural network are presented. Illustrative examples present the results of numerical simulations.

5.
Neural Comput ; 27(10): 2107-31, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26313602

RESUMO

In this letter, we present the dynamical equation and corresponding artificial recurrent neural network for computing the Drazin inverse for arbitrary square real matrix, without any restriction on its eigenvalues. Conditions that ensure the stability of the defined recurrent neural network as well as its convergence toward the Drazin inverse are considered. Several illustrative examples present the results of computer simulations.


Assuntos
Simulação por Computador , Redes Neurais de Computação , Simulação por Computador/tendências , Humanos
7.
IEEE Trans Neural Netw Learn Syst ; 26(11): 2830-43, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25706892

RESUMO

This paper presents a recurrent neural network (RNN) for computing the Drazin inverse of a real matrix in real time. This recurrent neural network (RNN) is composed of n independent parts (subnetworks), where n is the order of the input matrix. These subnetworks can operate concurrently, so parallel and distributed processing can be achieved. In this way, the computational advantages over the existing sequential algorithms can be attained in real-time applications. The RNN defined in this paper is convenient for an implementation in an electronic circuit. The number of neurons in the neural network is the same as the number of elements in the output matrix, which represents the Drazin inverse. The difference between the proposed RNN and the existing ones for the Drazin inverse computation lies in their network architecture and dynamics. The conditions that ensure the stability of the defined RNN as well as its convergence toward the Drazin inverse are considered. In addition, illustrative examples and examples of application to the practical engineering problems are discussed to show the efficacy of the proposed neural network.


Assuntos
Algoritmos , Simulação por Computador , Conceitos Matemáticos , Redes Neurais de Computação , Humanos , Dinâmica não Linear
8.
ScientificWorldJournal ; 2013: 708647, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24222747

RESUMO

A method with high convergence rate for finding approximate inverses of nonsingular matrices is suggested and established analytically. An extension of the introduced computational scheme to general square matrices is defined. The extended method could be used for finding the Drazin inverse. The application of the scheme on large sparse test matrices alongside the use in preconditioning of linear system of equations will be presented to clarify the contribution of the paper.


Assuntos
Conceitos Matemáticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...